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Abstract 

In paper I of helical diffraction [Worthington & 
Elliott (1989). Acta Cryst. A45, 645-654] an 
expression for the autocorrelation function (a.c.f.) for 
a helix was obtained. The Fourier transform of this 
a.c.f, gave a new expression for the diffracted 
intensity. In paper II the theory is extended to real 
helices containing subunits of finite size. There are 
two main approaches to consider. The first approach 
centers on the calculation of the a.c.f, of the helical 
array of subunits. In the special case when the subunit 
contains an assembly of discrete atoms, the 
expression for the intensity is shown to be equivalent 
to the classical formula of Franklin & Klug [Acta 
Cryst. (1955), 8, 777-780]. The second approach 
bypasses the a.c.f, calculation and expresses the 
intensity in terms of the Fourier transform of the 
subunit. The second approach may prove useful in 
molecular modeling studies of biological helical 
structures. 

Introduction 

In paper I of this series (Worthington & Elliott, 1989) 
it was shown that the Fourier transform of the 
autocorrelation function (a.c.f.) for a helix led to new 
expressions for the diffracted intensity. These 
expressions allow an examination of the effects of 
helical disorders. The formulation in paper I was 
elementary to establish the theoretical basis of helical 
diffraction. Specifically, the treatment referred to a 
helical array of atoms or to a helical array of point 
scattering centers. 

In paper I I I  extend the theory to real helices and 
hence derive the diffracted intensity for a helical array 
containing a three-dimensional subunit of arbitrary 
size. The diffraction formulas have similar properties 
to the corresponding expressions in paper I and this 
will allow the inclusion of helical disorders 
(Worthington & Elliott, 1989). 

There are two different approaches to evaluate the 
diffraction intensity for a helix containing subunits 
of finite size. The first approach is to calculate the 
a.c.f, contribution directly. The diffracted intensity is 
then obtained by cylindrically averaging the Fourier 
transform of the a.c.f, of the helix. The present treat- 
ment applies to subunits which have a three- 
dimensional distribution of electron density. In the 
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special case when the subunit contains an assembly 
of discrete atoms it will be shown that the cylindrically 
averaged intensity formulas obtained using the first 
approach are equivalent to the classical formula for 
helical diffraction (Franklin & Klug, 1955). The 
second approach bypasses the calculation of the a.c.f. 
contribution and expresses the intensity in terms of 
the Fourier transform of the subunit. The intensity 
profiles are finally obtained by computer. This second 
approach appears to be the more useful method for 
the X-ray analysis of biological structures and for the 
inclusion of helical disorders. 

Statement of problem 

I have used the same notation as in paper I. The 
reader will find that paper II assumes a fair knowledge 
of paper I. The point atoms in the elementary helix 
in paper I are now replaced with three-dimensional 
subunits of electron density t(r). The helix contains 
S subunits. There are M subunits in N turns with 
radius to, subunit repeat h and pitch p. The helix 
repeat is c and c = Mh -- Np. A list of symbols used 
in this presentation is summarized in Table 1. The 
lattice generating function ~(r) for this helical array 
of subunits is 

j = S - 1  

O(r)= ~ 8 ( r - r j ) *  t(r), (1) 
j = 0  

where rj has cylindrical coordinates ro,j~po, jh and * 
is the convolution symbol. The Fourier transform of 
t(r) is T(R) where t(r)<::> T(R). The a.c.f, of the 
subunit i s j ( r )=  t(r) • t ( - r ) a n d  the Fourier transform 
of j(r)  is J ( R ) =  IT(R)] 2. The a.c.f, for this general 
helix follows from (I.18) [equation (18) of paper I] 
and is given by 

m=S--I 

l (r)=Sj(r)+ ~, (S -m)Um(+r)*  8(z+mh) ,  (2) 
m----l 

where Um(+r) is the a.c.f, contribution at levels z = 
+ mh in the a.c.f, l(r) of the general helix. The contri- 
bution u,,(r) occurs at level z = mh whereas the con- 
tribution Um(-r) occurs at level z = - m h .  The func- 
tion Um(r) is given by 

Um(r) = 8(p-- pm) * ~m(r), (3) 

where Pm has cylindrical coordinates Am, tpm : the 
radius A m is given by (I.19) and tpm = ~r/2+ mtpo/2. 
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P 
tPo 
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x, y, z 
p, tp, z 
x , g , z  
~,cp, z 
x(~, l) 
¢(r) 
l(r) 
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t(r) 
T(R) 
t(r') 
T(R') 

j(r)  
J(R) 
• .% (r) 
, I , . (R)  
u, . (r)  
U.,(R) 
U,.(~:, t) 
llr m 

~J~m 
q,,. 
l,. 

Table 1. List o f  symbols 

Helix repeat 
Subunit repeat of  helix 
Subunits in N turns 
Pitch of helix 
Axial rotation angle of  helix 
Total number of  subunits in helix 
Cartesian coordinates in real space 
Cylindrical coordinates in real space 
Cartesian coordinates in reciprocal space 
Cylindrical coordinates in reciprocal space 
Cylindrically averaged intensity on layer line l 
Lattice generating function of helix 
Autocorrelation function (a.c.f.) of  helix 
Radius of  ring at levels z = + m h  in a.c.f. /(r) of  primitive 
helix 
tp coordinate of the first delta function on the above ring 
Electron density of  subunit 
Fourier transform of t(r) 
Electron density of rotated (in x, y plane) subunit 
Fourier transform of t(r') 
A.c.f. of  subunit t(r) 
Fourier transform of  a.c.f, j (r)  
Cross-correlation function (c.c.f.) between t(r') and t(r) 
Fourier transform of c.c.f..gin(r) 
C.c.f. at level z = mh of a.c.f. /(r) 
Fourier transform of c.c.f, u,, (r) 
Cylindrically averaged Fourier transform of Urn(R) 
Vector in c.c.f..¢m(r) 
Vector in c.c.f. . ,%(r) 
Angle defining the orientation of vectors p,, and q,~ 
Length of  vectors Pm and qr, 

The Fourier transform of the c.c.f, urn(r) is Urn(R) 
and, when expressed in cylindrical coordinates, the 
Fourier transform Um(~:, ~, Z) is 

U,,,(~:, ~, Z ) = e x p  [i27r~:am cos ( ~ -  ~Pm)] 

x dm(~:, qb, Z),  (7) 

where ,L,(¢, @, Z) is defined in (6). In the general 
case when the electron density t(r) is not centrosym- 
metric, the Fourier transforms T(R') and T ( - R )  are 
both complex. Moreover, their product 3re(R) and 
the Fourier transform Urn(R) as defined in (7) are 
also complex. However, in the cylindrical averaging 
process only the real part of Urn(R) is used, that is, 
Re[ Urn(R)]. In paper I the first step in the derivation 
of the diffracted intensity from the elementary helix 
with point atoms was to write down the Fourier 
transform contribution due to each delta function on 
the ring of radius Am. In the case of a general subunit 
of electron density t(r) each c.c.f, term at level z = mh 
is denoted urn(r) and is defined by (3). The Fourier 
transform of u,,(r) is Urn(R) and is defined by (7). 
The cylindrically averaged contribution is denoted 
Um(~:, Z) and, in integral form, is given by 

The function otto(r) in (3) is defined as 

otto(r) = t(r') * t ( - r ) ,  (4) 

where the r' axes are rotated an angle ~p = mq~o relative 
to the r axes in the xy plane. Thus, there are moOre(r) 
functions as the angle between axes is a linear func- 
tion of m. When m = 0 the ~¢o(r) term is simply the 
a.c.f, of the subunit itself and, consequently, the m = 0 
term in (2) is Sj(r). From (4), ~¢m(r) is a cross-correla- 
tion function (c.c.f.) between t(r') and t(r). The term 
c.c.f, is normally used when the two functions are 
different whereas the term a.c.f, is normally used when 
the two functions are the same (Champeney, 1973). 

Since otto(r) is a c.c.f, it follows that Urn(r) is also 
a c.c.f. There are two c.c.f.s to consider: Um(r) at level 
z = mh and Um(-r) at level z = - m h .  The c.c.f, um(-r) 
at level z = - m h  is given by 

Um(-r) = 8 (p+  pro) * ~m(-r) ,  

where ~m(-r )  is the c.c.f, between t(r) and t(r'). The 
relationship between urn(r) and Um(-r) simply 
denotes that there is a center of symmetry at the origin 
of the a.c.f, l(r) of the helix. 

The Fourier transform of ~¢m(r) is 3re(R), where 

~m(R) = T(R') T(-R). 

The R' axes are rotated an angle • = mq~o relative to 
the R axes in the X Y  plane. This rotation is expressed 
as follows: define a particular point in T ( - R )  in 
cylindrical coordinates as ~:, 0, Z then the correspond- 
ing point in T(R') is at ¢, @, Z and the @ coordinate 

= ¢r + rn~po = 2q~m. 

2"rr 

Um(sC, Z)=(1 /2~r )  I Re[U,,(~:, ~ , Z ) ] d ~ .  (8) 
o 

Note that the c.c.f.s um(-r) which occur at levels 
z = - m h  have Fourier transforms Um(-R). Although 
the Fourier transforms Urn(R) and Um(-R) are 
different the real part of the two transforms are, 
however, the same. Thus, Re [ Urn(R)] = 
Re [ Um(-R)]. While there is a choice of levels within 
the a.c.f, l(r) to study, the same cylindrically averaged 
contribution Um(~:, Z)  is consequently obtained in 
both descriptions. 

The Fourier transform of the a.c.f, l(r) for the 
general helix is L(R) and, as L(R) contains the elec- 
tron density information, L(R) = I(R), where I(R) is 
the diffraction intensity. The cylindrically averaged 
diffraction intensity I(~:, l) on layer line l is given by 

( 5 )  m = S - I  
I ( ~ , l ) = S J ( ~ , l ) + 2  Y~ ( S - m ) O m ( ~ , l )  

m = l  

x cos 2 w m l / M ,  (9) 

where Z = I /Mh,  l an integer. Note that (9) has the 
same form as the corresponding equation (I.20). The 

(6) difference is that Om(~,/) in (9) replaces the 
Jo(2w~Am) term in (I.20). 

In order to appreciate the content of (1) to (9), it 
is necessary to consider fully the properties of the 
c.c.f.s &,,(r) and urn(r) and their Fourier transforms 
3re(R) and Urn(R). It is instructive to consider in 
detail an idealized subunit which contains two dis- 
crete scattering centers. 
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Simple subunit model 

I treat the case when t(r) contains two scattering 
centers with weights w~ and WE and with coordinates 
z = 0 and ~ = 0. The electron density t(r) of the sub- 
unit in Cartesian coordinates is t(x,y) as the z 
dimension can be omitted. Thus, t(x, y) is given by 

t ( x , y ) = w ~ ( x + a , y - O ) + W E S ( x - a , y - O ) .  (10) 

The subunit t(r) is not centrosymmetric. The r' axes 
are rotated an angle m~oo relative to the r axes of 
subunit t(r). A drawing of the two subunits t(r') and 
t(r) is shown in Fig. 1. The total rotation of the - r  
and r' axes is 7r+ m~o = 2q~m. The c.c.f. 5~(x, y) con- 
tains four vectors: two have length O'm = 2a sin m~o/2 
while the other two have length ~,, = 2a cos m~oo/2. 
A drawing of the c.c.f. 5re(x, y) is shown in Fig. 2. 
Note that both the subunit t(r) and the c.c.f. 5, ,(r) 
are defined relative to the origin at the center of the 
subunit. 

The c.c.f. 5~(x, y) for the model is given by 

~,~m(X, y) = W26(X - o r  m COS ~ m ,  Y - O'm sin ~,,) 

+ W2~(X+O'm COS ~Pm, Y+O'm s in  ~m)  

+ WlW2[8(X--2m COS m~o/2, y 

--~m sin m~po/2) 

+ 8(x+2,,, cos m¢o/2, 

y - ~,, sin m~o/2) ]. ( 11 ) 

Because of the cylindrical averaging process as 
defined in (7), the c.c.f. Jr,, (x, y) is more conveniently 
expressed in cylindrical coordinates and 3rm(¢, ~0) 

then becomes 

y (p, w 8(p- 
+ w~8(p-,7,. ,  ~,-~-~,,,,) 

+ w~ w218(p -"Ym, ~' - m~oo/2) 

+ 8(p- .Y. , ,  ~p-zr-m,po/2)]. (12) 

The Fourier transform ~m(~, ~ )  for this idealized 
subunit model is 

8m(~, ~)  = w~ exp [i2zr~gm cos ( ~ -  ~om)] 

+ wE exp [ -  i2zrsCo'm cos ( ~ - -  ~om)] 

-t-2wlw 2 COS [2~r~:2,, COS (~--mt#o/2)].  

(13) 

Note that as w~ and WE are unequal the Fourier 
transform ~,,,(s r, ~ )  is complex. 

1. The first approach 

The initial step in the first approach is to obtain 
an analytic expression for the c.c.f, urn(r). The c.c.f. 
u~(r) consists of two terms: 8(p-p , , , )  and 5, ,(r~).  
The first term has been treated in paper I while the 
second term 5,,(x, y) is shown in Fig. 2. The c.c.f. 
urn(r) generates the c.c.f. 5, ,(r) at the end of fl~. A 
drawing of the c.c.f, u,,,(x, y) for the helical array of 
the idealized subunits is shown in Fig. 3. The c.c.f. 
u,,(x, y) contains four vectors ~, ,  + o',,, Pm= ~,,, + ~ , ,  
and q,, = zl,,,-~E,,,. The vectors Pm and qm have the 

2 2 same length lm since 12~ = ,~m -~- Am. The angle Om is 
defined by tan Om=~,,,/A~. Since vector p~ has 

X' 

x . . - ' a  

xx x 

-X' 

Fig. 1. A diagram of  the subunits t(x') and t(x). The x' axis is 
rotated an angle m~0o relative to the x axis. The dotted lines with 
arrows indicate the four vectors of #,,(x, y) which is redrawn 
in Fig. 2. 

i -  m~o/2 

" ~ £ ~ o / 2  

~ m 

F i g .  2. The c.c.f. ,~m(X~ y) for the simple subunit model. The c.c.f. 
.~,,(x,y) contains four vectors +tr m and +]~m with lengths 
tr,, = 2a sin m,po/2 and "Ym = 2a cos m,po/2, respectively..Note 
that the subunits t(x') and t(x) in Fig. 1 and the c.c.f. $m(X, y) 
have been drawn to the same scale. 
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cylindrical coordinates A,,, q~m, the origin of  #re(x, y) 
is at A,,, q~,, in the p, q~ plane. 

The c.c.f, u, ,(r)  can be expressed in Cartesian co- 
ordinates using Fig. 3, similar to 5~,,(x, y)  in (11). I 
omit this step and write Um(r ) using cylindrical coor- 
dinates and the diagram in Fig. 3. The c.c.f, u,,,(p, ~o) 
is 

Um(p, (p)= wZr[p- (Am +o',.), q~-~p,,,] 

2. Comparison with the classical formula 

I next consider  the classical formula for intensity 
I ( s  c, l) for an assembly of  discrete atoms with scatter- 
ing factors fj and coordinates  t), %, zj. The classical 
formula for I ( s  ~, l) was first derived by Franklin & 
Klug (1955) and describes the cylindrically averaged 
intensity along layer line /. The intensity l ( s  ¢, l) is 
given by 

Jr W 2 ~ [ p - - ( A m - - O ' r a ) ~  (p- -" tT- - (pm] 

+w.w2{~[p-l,., ~--(~m-- q'm)] 

+8[p--lm, q~--(~pm+~bm)]}. (14) 

The Fourier  t ransform of  urn(p, q~) is Um(~, 4 )  and 
Um(~, 4 )  is given by 

Um(~, q~) = W2 exp [ i2~r~:(a,. + cr,,) cos (q~ -- 'P,.)] 

+ w~ exp [--i2 ~r~(Am -- O'm) COS ( qb -- ~p,,,) ] 

+ WgW2(exp {i2~'~Im COS [ ~ - -  (~p,, -- q~,,,)]} 

+ exp {i27r~/,,, COS [ qb -- (~p,,, + ~b,.)]}. 

(15) 

From (8) and (15) the cylindrically averaged trans- 
form Um(S c) for the helical array of idealized subunits  
is 

Um(~) - - -  W~Jo[2Cr~( a m + or,.)] 

+ W~Jo[ZTr~(A,,-o',,)] 

+ 2w, W2Jo(ZTr~lm). (16) 

The cylindrically averaged diffraction intensity I ( s  c, l) 
is then obta ined from (9). 

I(~, l)= ~. Y. f~J,(2cr~ri)J,(2"rr~rj) T o, 
n i,j 

where 

To=cos[2zr(z , - z j ) I /c -n(q~, -q~j )] ,  (17) 

and where n is an integer determined by the selection 
rule for helical diffraction. Note  that the origin of  
coordinates in (17) is at the center of the helix whereas 
the scattering centers in our subunits are defined 
relative to the origin of  the subunit.  In the case of  
the simple subunit  model ,  Tu= 1; w replaces f ;  
r l = r o - a  and r2=ro+a and, from (17), I(~:, l) 
becomes 

I(~, l) = Y. w,J ,[27r~(ro-a)]+ 2 2 2 
n 

+ 2WlW2J,[27r#(ro-a)]J,[27r~(ro+ a)]. (18) 

In order  to compare  the classical formula  (18) for 
the simple subunit  model  with our formulas (9) and 
(16), it is necessary to re-examine the four vectors of  
u,,,(x,y) at level z =  mh. A drawing of  these four 
vectors is shown in Fig. 4. In Fig. 4, the two scattering 
centers in the plane x, y, 0 have been moved to the 
plane x, y, mh. The four vectors are A,. + or,,, A , , -  
O'm, p,,, q,, and they all subtend the angle m~po at the 
origin of  the circle of  radius to. The expansion 
(Jeffreys & Jeffreys, 1962) for Jo(27r~Vm), where 
Vm refers to the length of  each of the four vectors, 

rad ius  r o + a 

Z:m ~ w  2 
Prn ad 

x 

II/m m 

v 
× 

-y 

Fig. 3. The c.c.f, urn(x, y) for the simple subunit model. The c.c.f. 
urn(x, y) contains four vectors A,, +qr,,,, p,, and q,,. Vectors p,, 

lm- Am + E,,. The angle and q,, have the same length l,., where 2 _ 2 2 
qJ,. is given by tan ~0m = X,,/A,.. 

Fig. 4. The c.c.f, u,, (x, y) for the simple subunit model with z = mh. 
The c.c.f, u,,(x, y) in the plane (x, y, mh) contains four vectors 
A,, +~,,, Pm and q,.. All four vectors subtend angle m~o o. 
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therefore applies and is 

lri ~ O O  

Jo[27r~(Am+o',,,)]= Z JZ.[2~r#(ro±a)]cos nm~po, 
t i = - - o o  

whereas 

r l ~ o O  

Jo(27r~:/m)= Z L[27r#(ro-a)] 
/1 ~ - - o o  

xJ~[2zr#(ro+a)]cos nm~po. (19) 

In paper I a formula for I(#,I) ,  (I.20), was 
obtained. This equation is similar in form to (9) but 
it differs in that the Um(s r, l) factor in (9) is replaced 
by the Jo(2Zr~:Am) term. Moreover, it was shown in 
paper I [see (I.20)-(1.25)] that, after invoking the 
expansion for the Jo( ) function (Jeffreys & Jeffreys, 
1962), the I(~:, l) formula was in agreement with 
classical theory (Cochran, Crick & Vand, 1952). The 
formula for U~(¢) for the subunit model in (16) 
contains four Jo( ) functions and, from (19), it there- 
fore follows that the formula for I(#, l), described by 
(9) and (16), is in agreement with the classical formula 
of Franklin & Klug (1955). 

Although it was to be expected that the two 
methods for deriving the intensity formula of helical 
diffraction were equivalent, the proof was not easily 
obtained. Consider the case of a single subunit of 
electron density t(r) by itself. The diffracted intensity 
I(R) from the subunit can be obtained in two ways. 
The standard crystallographic method is to write 
I(R) = J(R) = IT(R)[ 2, where T(R) is the Fourier 
transform of t(r). Another way (used here) is to obtain 
the a.c.f, j ( r ) =  t ( r )*  t ( - r )  and hence obtain the 
intensity I(R) = J(R), where J(R) is the Fourier trans- 
form of j(r) .  The equivalence of the two methods 
follows from the convolution theorem. It has been 
shown that in the case of helical diffraction these two 
methods are also equivalent and the equivalence 
again follows from the convolution theorem. 

3. The second approach 

The second approach follows the first approach 
but bypasses the calculation of the c.c.f, urn(r). The 
Fourier transform of u,,,(r) is U,,,(R) and, after cylin- 
drical averaging, it is the U,,,(s ¢, l) term that is required 
in order to evaluate I(¢, l) from (9). The Fourier 
transform Urn(R) is given by 

Urn(R) = exp (i2rrpm. ~)3m (R), (20) 

where 0m has coordinates A,,, cos ~0m, Am sin ~0m and 
has reciprocal-space coordinates X, Y and where 

3re(R) is given by (6). Thus, in principle, the only 
unknown in (20) is T(R), the Fourier transform of 
t(r). 

The electron density t(x, y) of the simple subunit 
model is defined in (10). The Fourier transform of 

t ( -x ,  - y )  is T ( - X ,  - Y )  and this transform is given 
by 

T ( - X ,  - Y)  = w~ exp (i2zraX)+ w2 exp (- i2zraX).  

(21) 

The Fourier transform of t(x', y') is T(X' ,  Y') and 
this transform is given by 

T(X' ,  Y ' )= wl exp (- i27raX')+ w 2 exp (i27raX'), 

(22) 

and, as the axes are rotated an angle m~oo, X ' =  
X cos m~oo+ Y sin m~oo and, on substituting X '  in 
(22), T(X ' ,  Y') becomes 

T(X' ,  Y') = wl exp [-i27ra(cos m~0 X + sin m~po Y)] 

+ w2 exp [ i27ra(cos m~p0 X 

+ sin m~0 Y)]. (23) 

The Fourier transform ,DIn(X, Y) from (6) is obtained 
by multiplying (21) and (23) so that Sin(X, Y) 
becomes 

3re(X, Y) = w 2 exp {-i27ra[(1 - c o s  m % ) X  

- s i n  m~po Y]) 

+ w~ exp {i2zra[(1 - c o s  m~po)X 

- s i n  m~po Y]}+2WaW2 cos 2zra 

x [(1 +cos m~p)X +sin m~poY]. (24) 

The Fourier transform Urn(X, Y), from (20), can 
be written as 

Urn(X, Y) = exp [i2zr(Am cos ~m X 

"[- A m sin ~o,,, Y)]~m(X, Y), (25) 

where ,Dm(X, Y) is given by (24). The next step is to 
convert the Cartesian coordinates X, Y to cylindrical 
coordinates s c, ~ so as to obtain Um(~:, q~). The 
cylindrically averaged transform U,,,(~) is obtained 
using (7) and Um(~) then becomes 

271" 

Um(#)=(1/27r) j" Re{exp[i2~.~:A m 
0 

x cos ( ~ -  ~om)]3,,,(#, ~)} d~.  (26) 

In general, 3m(~:, tit,) is not known explicitly so that 
(26) is expressed in series form similar to (I.32). The 
diffraction intensity I(~:, l) for the subunit model is 
then obtained by substituting Um(~:) from (26) into 
(9). 

4. Comparison between the two approaches 

The cylindrically averaged diffraction intensity 
I(~:, l) for the subunit model will be the same for the 
two approaches provided that the averaged transform 
Um(~) is the same. In the first approach an analytic 
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expression was obtained for the Urn(c, @) transform, 
see (15) and, consequently, this led to an explicit 
expression for U,,,(s¢), see (16). In the second 
approach the Um(¢, ~ )  transform for the subunit 
model is given by (24) and (25). Since the expression 
for U,,(¢, @) is seemingly complicated, the averaged 
transform U,,,(~) is obtained by computer after 
expressing (26) in series form. 

Since diagrams of the c.c.f.s 5~,,(x, y) and Urn(X, y) 
for the subunit model are shown in Figs. 1, 2 and 3, 
it is possible to simplify the U,,,(X, Y) transform of 
(25). The trigonometric conversions are 

a ( 1 - c o s  mq~o)=-or,, cos ~0m, 

a sin mq~o = o,,, sin q~m, 

a(1 +cos  m~o)= 2m COS m~0o/2, 

a sin m~o = Zm sin mq~o/2. 

The x and y coordinates of vectors Pm and qm are 
denoted p . . . .  Pm,y and q . . . .  qm,y respectively. From 
Fig. 3, it follows that 

Pm,x = Am COS ~0 m + "~m COS m~oo/2, 

Pm,y = (Am + O'm) s i n  ~0m, 

q,,,,x = A,,, cos ~m --"~rn COS m~Oo/ 2, 

qm, y ---- (Am -- °'m) sin ~m, 

where the length Im of the two vectors Pm and qm is 
given by 

: Pm, x W pm,y ---- qm,x W qm, y. 

On substituting the above conversions into (24) 
and (25) an explicit expression for Urn(X, Y) is 
obtained and, after converting the Cartesian coordin- 
ates X, Y to cylindrical coordinates, it is evident that 
the Um(~:, ~ )  transform is identical to the U,.(~:, qo) 
transform of (15) which was derived using the first 
approach. Thus, the same averaged transform Um(~:) 
is obtained in the two approaches and the two 
approaches therefore yield the same diffraction 
intensity I(~:, l). 

General  subunit  model  

So far, the subunit model with only two scattering 
centers has been treated in detail. The search for an 
explicit expression for the transform U,,(~, q~) was 
straightforward but non-trivial as it involved some 
new concepts. The reader might like to extend the 
model by increasing the number of parameters, that 
is, by adding extra scattering centers and by including 
z and q~ coordinates. I will omit this treatment (which 
is inferred) and next consider the case of a general 
subunit model with numerous parameters. 

I finally consider the case of a three-dimensional 
subunit of electron density t(r). The first approach 

does not seem to be a good choice as the evaluation 
of U,,(~, q), Z)  involves two steps: the calculation of 
the c.c.f. Urn(p, ~0, Z) followed by the computation of 
the Fourier transform U,,(~,crP, Z). The second 
approach appears to be a better choice even though 
the evaluation of U,,(~:, q~,Z) again involves two 
steps: the calculation of the Fourier transform 
T(~, q~, Z)  followed by the formation of 3m(~, q~, Z)  
using (6) and, finally, U,,,(~:, q~, Z)  using (7). 

In both approaches, only knowledge of the Fourier 
transform U,,(~, q~, Z)  in rings of constant ~: and 
constant Z = I/c are required. Moreover, only dis- 
crete evenly spaced q~ values on each ring in 
reciprocal space are needed in order to obtain Um (~, l) 
using the series form of (8). The author anticipates 
that the second approach will prove the more useful 
but this is a practical matter of programming and it 
is too early for a final verdict. 

Two special cases 

Previous calculations of helical structures have 
used subunits of discrete atoms (Franklin & Klug, 
1955) or, in the case of muscle, spherical subunits of 
uniform electron density (Worthington, 1961) or 
spherical subunits with Gaussian electron density 
(Haselgrove, 1980). I briefly consider the methods for 
dealing with the cases when the subunit is either a 
cylinder or a pillar with uniform electron density. 
Note that the Fourier transforms of these two subunits 
are well known (Champeney, 1973). The objective 
here is to illustrate how the Fourier transform Um (S ¢, l) 
is obtained in these two cases. 

A. Cylinder. The three-dimensional subunit t(r) 
has uniform electron density ~- and is a cylinder with 
area a = 7r~r 2 and length A. The long axis with length 
A is along the x axis. The Fourier transform of t(r) 
is T(R) and, using Cartesian coordinates, T(X,  Y, Z)  
is given by 

T(X,  Y, Z ) =  raA W( Y, Z)  sinc zrAX, (27) 

where W( Y, Z ) =  2Jl(m)/rn, m = [27rtr( y2 + Z2)-1/2] 
and where sinc 0 = sin 0/0. The Fourier transform 
T( £, ~, l), Z = l/ c then becomes 

T(~, ~, 1)= tax W(~, cb, I) sine ~ra~ cos q~, (28) 

where Y = ~¢ sin q~. The Fourier transform can then 
be evaluated at discrete values of q~ for a series of 
values and for a constant layer line I. The averaged 
transform U,,(s ¢, l) for the cylinder of uniform density 
can be computed using (28) and the series form of (8). 

B. Pillar. The three-dimensional subunit t(r) has 
uniform electron density r and is a rectangular pillar 
with dimensions Y0 and Zo and length h along the x 
axis. The pillar has cross-sectional area YoZo. The 
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Fourier transform of t(r) is T(R) and, using Cartesian 
coordinates, T(X, Y, Z )=  T(X, Y)T(Z) .  This is a 
simplification in the computation of the diffraction 
intensity I(~:, l). One can write, after omitting the 
weight factors, the Fourier transform T(X, Y) as 

T(X, Y) = sinc ¢rAX sinc 7ryo Y, (29) 

and T(/), Z = l~ c, is given by 

T(1) -- sinc 7rzol/c. (30) 

The Fourier transform T(X, Y) in cylindrical co- 
ordinates ~, • is 

T(~, ~ )  = sinc 7r)t~: cos • sinc ¢ryo~: sin qb. (31) 

The averaged transform Um(~:) for the pillar of uni- 
form density can be computed using (31) and (26). 

Discussion 

A new formula for the diffracted intensity I(~:, I) for 
a helical array of subunits has been derived. This 
formula is exact. It may have computational advan- 
tages in fiber diffraction but further study is required. 
The present formulation allows the examination of 
the effects of helical disorders. The treatment of dis- 

order in the case of the elementary helix was described 
in paper I. 

The electron density of each subunit is defined 
relative to its own origin independent of the helical 
parameters. This straightforward application of the 
Fourier transform of the subunit may prove to be 
useful in molecular model-building studies of biologi- 
cal helical structures and in a variety of disorder 
problems relating to helical structure. A long-term 
aim of this work is eventually to study the dynamics 
of biological structures. 

I thank Professor G. F. Elliott for discussions and 
his helpful comments on the manuscript. 
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Abstract 

It frequently occurs that a biological assembly in a 
crystallographic asymmetric unit has more than one 
noncrystallographic symmetry operator. For instance, 
a tetramer might have the point group 222 or a 
spherical virus will have the point group 532. A self- 
rotation function searches for the direction and angle 
of rotation of the individual noncrystallographic sym- 
metry operations, while a cross-rotation function 
searches for the relationship of a structure in one unit 
cell with similar structures in another cell. The power 
of the rotation function can be greatly enhanced by 
searching for all noncrystallographic symmetry 
operators simultaneously. The procedure described 
previously [Rossmann, Ford, Watson & Banaszak 
(1972). J. Mol. Biol. 64, 237-249] has been general- 
ized. The increased power of this 'locked' rotation 
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function permits a good determination of the orienta- 
tion of an icosahedral virus in the presence of less 
than 1% of the possible diffraction data to 7/~ resol- 
ution. In addition, the peak-to-noise ratio is substan- 
tially improved. 

Introduction 

The rotation function (Rossmann & Blow, 1962; 
Hoppe, 1957) determines the direction and angle of 
rotation of noncrystallographic symmetry operators 
in a crystal lattice. The latter is any operator that is 
valid within a local volume (as opposed to infinite 
volume) of the crystal lattice. In many cases, biologi- 
cal assemblies contain point groups of fairly high 
symmetry. When crystals are available, the rotation 
function can be used to determine the point group 
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